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Almtract--The fundamental equations for the steady-state flow of a gas through a porous medium with 
prescribed heat sour~  are cka'ived. Application of  these equations ramble t l~  pr~suro drop and the 
flow distribution of  a gaseous coolant through a pebble-bed type nuclear reactor to be calculated. 
One exact solution is givcm. The maximum gas tcanpe~ture is found to be very much higher than the 

mixed mean value. 

R ~ & - - L e s  equations fondanumtales de l'~coulement permanent d'un gaz dam tin milieux pomux ont 
~tablie~ tm ~ d'une source de chaleur. L'application de ces ¢~luations conduit au calcui de 

]a ~ de ehar~ ot de la distribution de l'b:oul~m~t d'un fluide r e f r o ~  ~ dam un r ~ ' t e ~  
du type ~t lit granuleux. Line 8olution exaete est obttmue. La te~p4~tu~ maximum du 8az ~t  trouvb~ 

bima sup4meum/t celia donnb~ par la vakur moyenne du mbAange. 

Z ~ m ~ u ~ - - F m -  die statiomir¢ Str6mung eiues Gases dutch ein porOses Medium mit 
vorl~gobencr Wlirmequ~lo warden die Grundgleichun~n abgdoitet. Dime G l e i c h ~  ~statten 
die BerecJ~ung des Druc]mbfalls mad der StrOmungsverteilung eines K f i l ~  beim Dumhtritt 
dutch eiuen Kernreaktor veto pebble-bed-Typ. Eine ¢xakto LOsung wird mit~teilt. Man fmdet, 

class die h6chste Gastemperatur sehr vial hOher als der Mittelwert ist. 

Almraet--B~me~enM 0CHOBRMO ypaBueHH~ nepeaoca raaa qepea nopKcTym cpe~y ~a~ 
cramloHapH0ro pe~z~a e 3RRaHHMM TeH~cBMM HCT0qHItKOM. Hp~MeHeHHe 3TI~XypaBHeHHR 
noanonHer n~qRcan~ nepena~ ~al~eHH~ H vacnpe~eaeK~e cKopoc'm HOTORa raaa B cpe~e 
HpynHoaepHacToro H~epHoroTommaa peaKTopa. HoayqesoToqnoe pemenxe nocTas~esHoR 
aa~a~L Hafl2euo, qTo MaRc~Ma~bHaH reMneparypa raaa aHaqHTeJ~,Ho npea~maercpe~Hmm 

resnepa~ypy csecn. 
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NOTATION 

coherent set of  units may be used. 
defined in equation (6); 
defined in equation (18); 
defined in equations (4), (5); 
specific enthalpy; 
isentropic exponent; 
reactor core length; 
pressure; 
heat generation per unit time 
volume; 
radial co-ordinate; 
reactor core radius; 
root of equation (12); 
temperature; 
specific volume; 
= r / R ;  
axial co-ordinate. 
defined in equation (27) 

and 

Greek symbols 

fl, defined in equation (18); 
O, defined in equation (15); 
~, defined in equation (21); 

-= k / ( k  - -  1); 
~, defined in equation (15); 
f = ~ ' z / L ;  
p, density; 
a, defined in equation (13); 
r, defined in equation (16); 
~b = ~ ' R / L .  

Subscripts 

i, tensor index; 
r, radial component; 
-, axial component; 
O, inlet condition. 
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INTRODUCTION 
Tw: problem of flow distribution in gas-cooled 
nuclear reactor cylindrical channels has been 
treated in a previous paper [1]. It was shown 
that if the cooling channels are of the same 
size the non-uniformity of heat generation 
in the reactor core distorts the coolant flow in a 
very unfavourable way, such that hot spots are 
cooled by a smaller quantity of gas. In order to 
achieve a more nniform temperature distribution 
in such reactors, it is therefore necessary to vary 
the size of the cooling channels or to use suitable 
throttling devices at certain channels. 

In case of the so-called pebble-bed reactors, the 
coolant flows through the rather irregular space 
between the pebbles. There are no straight 
guiding channels for the flow. Since cross-flow is 
possible in this case, the effect of non-uniform 
heating will be accentuated and the flow pheno- 
menon is very much more complex than in the 
case of straight channels. 

In this paper the fundamental equations of 
such a gas flow through a porous mass with non- 
uniform heat generation will be formulated. One 
exact solution of these equations for a typical 
case can be given. In general, however, only 
numerical solutions using digital computers 
would be feasible. 

THE FUNDAMENTAL EQUATIONS 

Consider the steady-state flow of a gas through 
a pebble-bed reactor. Since the flow space 
between the pebbles is irregular, it would be 
impossible to treat the flow field in detail. We 
shall therefore take the whole pebble-bed as an 
isotropic porous medium and consider only the 
mean velocity of gas flow through a unit section 
perpendicular to the average mass flow. Let us 
be this mean velocity vector.* Then the con- 
tinuity equation may be written as 

div (pui) = 0 

p = l /v  being the density of the flowing gas. 

* No distinction is made between a vector and its 
components nor between its covariant and contravariant 
components in case of non-Cart~/a- coordinates [2]. 
Thexe should be no danger of confusion. The sunm~tion 
convention of tensor notation is understood where it 
applies. 

The energy equation, neglecting heat conduc- 
tion through the mass, is: 

pus. grad h = Q 

where h is the enthalpy per unit mass of the gas 
and Q is the density of heat generation. Intro- 
ducing the Nabla operator, the above equations 
may be written as 

Viu~ = pus V~v (1) 

pu, v,h = Q (2) 
The equation of motion for the flow in a 

porous medium can be written in the following 
form in the case of laminar flow [3]: 

V,p + au~ = 0 (3) 

Namely, the pressure gradient is proportional 
and parallel to the velocity vector, a being the 
Darcy coefficient, which is proportional to the 
viscosity of the gas. For turbulent flow in one- 
dimensional case, the pressure head drop is 
related to the velocity head by: [3It 

(dp/dx) + F'pu' = 0 (4) 

where F' depends on the Reynolds number of 
flow. A generalization of this expression to a 
three-dimensional case can be accomplished by 
assuming that, on account of isotropy, the pres- 
sure gradient is in the same direction as the mean 
flow and that its magnitude depends only on the 
magnitude of the mass flux density; thus 

v,r +  pluDu, = o (5) 

where ~----F'plul) actually is a function of 
the Reynolds number, but the dependence on 
viscosity and on porous structure is ignored in 
the present stndy. F may be taken as 

F = a + bplul (6) 

where a and b depend only upon the viscosity of 
the gas and the structure of the porous mass, 
The one.dimensional case of (5) reduces to a 
well-known form [3] of equation (4). Equation 
(3) is included in (5) if b = 0 or at small mass 
flax. 

? For high Mach numbers, a term proportional to 
pu(du/dx) mint be included. This term may be neglected 
in the present application. 
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One more equation is needed to complete the 
description of the flow. The coolant will be 
taken as a polytropic gas (i.e. ideal gas with 
constant specific heats) or more generally a 
polytropic vapour [4]. Then the specific enthalpy 
is given by: 

h = Apv + const. ;t --- k / ( k  - -  1) (7) 

where k is the isentropic exponent. 
Equations (I), (2), (5) and (7) are now com- 

pletely sufficient for the problem. If the boundary 
conditions and the heat source Q are given, the 
unknown quantities u~, p, v, h can be solved. It is 
evident that an exact solution is impossible in the 
majority of cases. 

In the application to pebble-bed reactors, it 
can be assumed that the pressure drop through 
the reactor is only about a few per cent of the 
absolute pressure [1]. In equation (7) the effect 
of  pressure change on enthalpy can then be 
neglected and the flow can be considered as 
practically isobaric with respect to density and 
temperature changes. Equation (7) can be 
written as 

V~h = ~:V~v 

where : is the mean pressure. Substitution into 
equation (2) results in 

pu,V,v = u~V~ (log v) = Q / A :  (8) 

and, using equation (1), 

V,ui = Q / A :  (9) 

We thus obtain the interesting result that the 
velocity field corresponds to that of an incom- 
pregsible flow having a mass-source distribution 
proportional to the actual heat source. 

THE CYLINDRICAL REACTOR PROBLEM 
We shah now apply the above set of equations 

to a cylindrical reactor core with radius R and 
length L, Fig. I. The cooling gas enters from 
one end at the cylindrical co-ordinate z = 0 and 
leaves the other end at z = L. The heat source 
density is assumed to be axisymmetrical and is 
given by [I]: 

Q(r, z) = ~ . 2" 2J1(s) J°(ws) sin ~ (10) 

where 
w =-- r /R ,  ~ ---- =z /L  (11) 

and ~ is the average dcntsity of heat source in the 
entire reactor core. s is the smallest root of the 
equation 

.t0(s) = ~sJ1(s) (l 2) 
and 

Q 
°R-- [_--dQ/~],. R 

is the so-called extrapolation length, which 
depends on the effectiveness of the reflector on 
the cylindrical surface. 

u z q u  

: i 

U e  

| 

l 

]L 

FIG. 1. Cylinder coordinates of the reactor core. 
Gas flows vertically upward. 

Using (10), equation (9) in cylindrical co- 
ordinates becomes 

0~,~ 1 0 ( w t ~ )  s 
~b ~ + w"  O ~  - -  ~bO. ddl(s)" J°(ws)  sin. ~(14) 

where 

o = (A--~/To = (,,R'LO.)/(,,R~oap) ; (15) 

uz, u, are the axial and radial components of the 
velocity vector, a0 being the mean velocity at 
entry. 0 is the ratio of the mixed mean tempera- 
ture rise (3~) to the absolute temperature* To 
of the gas at entry. 

Now define 

"r =__- V/Vo (16) 

* This is correct only for polytropic gas. For poly- 
tropic vapour, the modification is obvious. 
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where Vo is the specific volume at entry. Since the 
pressure has been assumed constant, ~, is also the 
ratio of absolute temperatures. Substitution of 
(10) into equation (8) gives 

~ .  0 log ~" 0 log ~" _ 

~ f  4- ~'" aw 

= ~0.4J~(s)"  3o(SW) sin ~ (17) 

Finally, writing 

t8 --- ~ p °  -- p)/(Ap)o, (ziP)o ~ F(po~o)fioL "~ 

f ~-- F(plul)/F(poao) f (18) 

equation (4) can be separated into its com- 
ponents: 

The normalization denominator (zlp)e is evidently 
the pressure drop which would result if there 
were no heat generation and the gas conditiom 
at entry could remain unchanged during the 
through flow. 

The four equations (14), (17), (19) now form a 
simultaneous set for the four unknown quantities 
~,, ~,, ~',//. The boundary conditions are 

~,----0,~----0 ~ f o r 6  = 0  1 
f~ -~ f~ 21z,w dw = 1 l 

a~ I (20) I~, = ~w = O for ~ = =, 

or w = O a n d ,  w =  l 

If equation (6) is used, the function f can he 
written as 

l + ,4~II,  bp,ao 
• , ~ ---- ( 2 1 )  f =  l + ~ c  a 

i s  a measure of the degree of turbulence and 
depends upon the Reynolds number at entry. 

~ A R  FLOW 

One exact solution is possible for a special 
form off, namely if in equation (5) F is constant 
or in ( 2 1 ) f =  1, which is the case if the flow is 
everywhere lamiuar and if the change of viscosity 

with temperature is negligible. Then equation 
(3) applies and equations (19) become 

o-f = ~'' ~ = ~ "  (22) 

Taking the divergene~ of equation (3) or of 
equations (22) and substituting equation (9) or 
equation 04), one obtains a Poisson's equation: 

a 
V, V,p + ~-~. {2 = 0 (23) 

for the general case and 

o p + ~ ,  " N, w 
# s  

= 0 " 4 J ~ "  Jo(~,) sin ~ (24) 

for the special case of equation (10). 
Equation (24) with the boundary conditions 

(20) can be readily solved analytically by classical 
means. The result is 

0 O's' [_ao(ws) so(~w)] 
4 ~ + ~ [ ~ ' ~ - - ~  4- ~I,(~)J s i n  f 

~,.(w, 6) = ~ = l + ~ - 
(25) 

0 1 
4 ~ + :L~,(s) + ~ j  cos 

--~.~¥:[. j -~ ~ j  ~e 

J and ! are the two B~sel's functions. The 
correctness of (25) can be easily verified by 
substituting into equations (20) and (24). 

Fig. 2 shows the velocity components ~,~ and 
/~, for ~ ---- 0, (s ---- 2"405) and ¢ ---- ~ / 2 ( L  = R2). 
It may be noted that the velocity field is practi- 
cally axial if 0 is not very much greater than unity. 

To determine the temperature field, it will be 
necessary to solve equation (17) together with 
(25). The boundary condition is 

~" ---- 1 for ~ = 0 (26) 

This is a differential equation of first order and 
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can be solved numerically or graphically using 
the well-known isocline method. Owing to the 
complexity of  equation (25) an analytical solution 
is difficult. 

If only the maximum temperature ~-,,, = T,~/To 
is needed, then this can be determined analyti- 
cally. It can be seen that the maximum tempera- 
ture must occur on the stream line through the 
cylindrical axis. For this stream line, we have 

a 
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Fro. 2. Coolant velocity field within the reactor core. 
The plotted values are the axial and radial compon- 
ents of the additional velocity above the adiabatic 
incompre~ble values. The additional velocity is 

proportional to the average heat generation. 

evidently ~, = 0 always due to symmetry. Then 
equation (17) becomes: 

~e~dl°g~" . 0 s 
t~'(O' " ~ ~ 4"Jx(s)" sin 

and substituting m- from (25): 

(0/4) [sldz(s)] sin f d~ 
d log ~" = (1 + 0/2) -- (0/4) Z(~b, s) cos 

Z(~b, s) ~ ( ~  + sl ) + $-/t(~) (27) 

This  is readily integrated. The maximum tem- 
perature is at the exit point {: = ,r and its value 
is 

• r m 

(1 + 0/2) + (0/4)Z(~b, s)l n 
(1 + 0/2) -- (0/4)Z(¢, ~-); 

1 + s2/~ 2 
n - -  1 + sJt(s)/~blt(~b ) (28) 

For the data above (s = 2.405, ~b = =/2), the 
evaluation of (28) results in 

~',n = 5.15, for O = 1 
~'m = 14.7, for 0 --- 2 f (29) 

These values are very much higher than the 
mixed mean temperature, which is, by definition, 
given by 

-~ = 1 -4- 0 (30) 

The maximum temperature rise can therefore be 
many times the average temperature rise. 

FLOW 
The assumption of laminar, flow is perhaps 

non-realistic for the application to pebble-bed 
reactors. I f  turbulence is assumed, then the 
general expression (21) must be used in equation 
(19), and only numerical solution using digital 
computer would be feasible. However, some 
qualitative effects of turbulence may be inferred 
from the basic equations. Since according to 
Fig. 2 the magnitude ]p] of the velocity does not 
vary very much at sections perpendicular to the 
axis, the mass flux density in one section will be 
principally determined by the temperature, i.e. 
~- in equation (21). Near the axis the heat rate 
and hence the temperature is high. The frictional 
force f is smaller according to (21). Equations 
(19) then show that the velocity there will be 
higher than in the laminar case. This would 
mean that the central part gets more cooling gas 
and the temperature is therefore less acute than 
in the laminar case. Hence turbulence favours the 
temperature distribution. 

CONCLUSION 
It is seen from the calculation that although 
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the velocity field depends mainly upon the 
average heating rate of the cooling gas and is 
rather uniform throughput a cross-section of the 
flow, the temperature field may be quite non- 
uniform for laminar flow. The maximum value 
of the temperature rise may be many times the 
average value. Turbulence in the flow may 
flatten the temperature peak, but the exact value 

cannot be determined without a more thorough 
solution of the given equations, 

REFERKNCES 
1. L. S. Dzu~G, Brown Boveri Rev. 45, 14 (1958). 
2. L. S. DZUNG, Brown 1knurl Rev. 40, 321 (1953). 
3. P. C. C~MAN, Flow of  Gases through Porous Media. 

Butterworths, London (1956). 
4. L. S. DZUNG, Z. angew. Math. Phys. 6, 207 0955). 


