Int. J. Heat Mass Transfer. Vol. 1, pp. 236-241. Pergamon Press 1960. Printed in Great Britain

A COOLING PROBLEM OF PEBBLE-BED NUCLEAR REACTORS

L. S. DZUNG
Brown, Boveri & Co., Baden, Switzerland

(Received 15 June 1959; revised 19 February 1960)

Abstract—The fundamental equations for the steady-state flow of a gas through a porous medium with

prescribed heat source are derived. Application of these equations enable the pressure drop and the

flow distribution of a gaseous coolant through a pebble-bed type nuclear reactor to be calculated.

One exact solution is given. The maximum gas temperature is found to be very much higher than the
mixed mean value.

Résumé-—Les équations fondamentales de I'écoulement permanent d’un gaz dans un milieux poreux ont

été établies en présence d’une source de chaleur. L’application de ces équations conduit au calcul de

la perte de charge et de 1a distribution de I'écoulement d’un fluide refroidisseur gazeux dans un réacteur

du type a lit granuleux. Une solution exacte est obtenue. La température maximum du gaz est trouvée
bien supérieure A celle donnée par 1a valeur moyenne du mélange.

Zusammenfassung—Fiir die stationiire Stromung eines Gases durch ein porises Medium mit

vorgegebener Wiirmequelle werden die Grundgleichungen abgeleitet. Diese Gleichungen gestatten

die Berechnung des Druckabfalls und der Strdmungsverteilung eines Kiihigases beim Durchtritt

durch einen Kernreaktor vom pebble-bed-Typ. Eine exakte Lysung wird mitgeteilt. Man findet,
dass die hichste Gastemperatur sehr viel hoher als der Mittelwert ist.

Abstract—DBriBejeHH OCHOBHHE YPaBHEHMA IepeHOCA Trasa 4epe3 NOPUCTYIO cpery IIA

CTAIOHAPHOTO peKUMA C 3aMaHHHM TEIICBHIM MCTOUHMKOM. IIpnMeHeHMe 3THX ypaBHeHu#

NOBBOIAET BHUYMCINTD Nepenal XABIeHMI U pacnpefelieHuMe CKOPOCTH HMOTOKA rasa B cpeje

KpYNHO3EPHUCTOr0 ANEPHOrO TOMIMBaA peakropa. [lomyueso Tousoe pemenme MOCTABICHHON

sanauy. Haltzeno, 4To MaxcCHMaIbHAM TeMNepaTypa rasa 3HaYHTEJIbHO NPEBHIIAET CPEIHIO0
TeMIIEPATYPY CMecH.

NOTATION Greek symbols

Any coherent set of units may be used. B, defined in equation (18);
a, b, defined in equation (6); 8,  defined in equation (15);
f defined in equation (18); x, defined in equation (21);
F, F’, defined in equations (4), (5); A =kitk —1);
h,  specific enthalpy; u,  defined in equation (15);
k, isentropic exponent; £ = mz/L;
L, reactor core length; P density;
D, pressure; o a, defined in equation (13);
Q,  heat generation per unit time and - defined in equation (16);

volume; ¥ = wR[L.

7, radial co-ordinate;

R, reactor core radius;
s, root of equation (12);

T, temperature; Subscripts

v, specific volume; i, tensor index;

w, =r/R; r, radial component;
z. axial co-ordinate. z, axial component;
Z, defined in equation (27) 0, inlet condition.
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INTRODUCTION

THE problem of flow distribution in gas-cooled
nuclear reactor cylindrical channels has been
treated in a previous paper [1]. It was shown
that if the cooling channels are of the same
size the non-uniformity of heat generation
in the reactor core distorts the coolant fiow in a
very unfavourable way, such that hot spots are
cooled by a smaller quantity of gas. In order to
achieve a more uniform temperature distribution
in such reactors, it is therefore necessary to vary
the size of the cooling channels or to use suitable
throttling devices at certain channels.

In case of the so-called pebble-bed reactors, the
coolant flows through the rather irregular space
between the pebbles. There are no straight
guiding channels for the flow. Since cross-flow is
possible in this case, the effect of non-uniform
heating will be accentuated and the flow pheno-
menon is very much more complex than in the
case of straight channels.

In this paper the fundamental equations of
such a gas flow through a porous mass with non-
uniform heat generation will be formulated. One
exact solution of these equations for a typical
case can be given. In general, however, only
numerical solutions using digital computers
would be feasible.

THE FUNDAMENTAL EQUATIONS

Consider the steady-state flow of a gas through
a pebble-bed reactor. Since the flow space
between the pebbles is irregular, it would be
impossible to treat the flow field in detail. We
shall therefore take the whole pebble-bed as an
isotropic porous medium and consider only the
mean velocity of gas flow through a unit section
perpendicular to the average mass flow. Let y,
be this mean velocity vector.* Then the con-
tinuity equation may be written as

div (pu,) =0
p = 1/v being the density of the flowing gas.

* No distinction is made between a vector and its
components nor between its covariant and contravariant
components in case of non-Cartesian co-ordinates [2].
There should be no danger of confusion. The summation
convention of tensor notation is understood where it
applies.
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The energy equation, neglecting heat conduc-
tion through the mass, is:

pui.g‘adh= Q

where A is the enthalpy per unit mass of the gas
and Q is the density of heat generation. Intro-
ducing the Nabla operator, the above equations
may be written as

Viau; = pu; Vo 0Y]
pu;Vih = Q V)]

The equation of motion for the flow in a
porous medium can be written in the following
form in the case of laminar fiow [3}):

Vip + au; =0 3

Namely, the pressure gradient is proportional
and parallel to the velocity vector, a being the
Darcy coefficient, which is proportional to the
viscosity of the gas. For turbulent fiow in one-
dimensional case, the pressure head drop is
related to the velocity head by: [3]t

(dp/dx) + F'pu® =0 @)

where F’ depends on the Reynolds number of
flow. A generalization of this expression to a
three-dimensional case can be accomplished by
assuming that, on account of isotropy, the pres-
sure gradient is in the same direction as the mean
flow and that its magnitude depends only on the
magnitude of the mass flux density; thus

Vip + Flplulu; = 0 &)

where F(=F'plul) actually is a function of
the Reynolds number, but the dependence on
viscosity and on porous structure is ignored in
the present study. F may be taken as

F = a + bplu| (6)

where a and b depend only upon the viscosity of
the gas and the structure of the porous mass,
The one-dimensional case of (5) reduces to a
well-known form [3] of equation (4). Equation
(3) is included in (5) if b = 0 or at small mass
flux.

+ For high Mach numbers, a term proportional to
pildujdx) must be included. This term may be neglected
in the present application.
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One more equation is needed to complete the
description of the flow. The coolant will be
taken as a polytropic gas (i.e. ideal gas with
constant specific heats) or more generally a
polytropic vapour {4]. Then the specific enthalpy
is given by:

h=2Apv+const. A=kik—1)

where k is the isentropic exponent.

Equations (1), (2), (5) and (7) are now com-
pletely sufficient for the problem. If the boundary
conditions and the heat source Q are given, the
unknown quantities u,, p, v, h can be solved. It is
evident that an exact solution is impossible in the
majority of cases.

In the application to pebble-bed reactors, it
can be assumed that the pressure drop through
the reactor is only about a few per cent of the
absolute pressure [1]. In equation (7) the effect
of pressure change on enthalpy can then be
neglected and the flow can be considered as
practically isobaric with respect to density and
temperature changes. Equation (7) can be
written as

M

Vgh = A ﬁV,-v

where j is the mean pressure. Substitution into
equation (2) results in

puVw = u;V; (log v) = Q/Ap ®
and, using equation (1),
Viu; = Q[Ap (&)

We thus obtain the interesting result that the
velocity field corresponds to that of an incom-
pressible flow having a mass-source distribution
proportional to the actual heat source.

THE CYLINDRICAL REACTOR PROBLEM

We shall now apply the above set of equations
to a cylindrical reactor core with radius R and
length L, Fig. 1. The cooling gas enters from
one end at the cylindrical co-ordinate z = 0 and
leaves the other end at z = L. The heat source
density is assumed to be axisymmetrical and is
given by [1]:

o, z) = Q

Jo(ws) sin ¢ (10)
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where
w =r/R, = nz/L (11)

and { is the average density of heat source in the
entire reactor core. s is the smallest root of the
equation

To(s) = osT(s) (12)
and
1o
R= [—dQ/dr],-R

is the so-called extrapolation length, which
depends on the effectiveness of the reflector on
the cylindrical surface.
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Fic. 1. Cylinder co-ordinates of the reactor core.
Gas flows vertically upward.

Using (10), equation (9) in cylindrical co-
ordinates becomes

5#,, 1 3(W#f)
Voetw Tow

=y . 41( 5 . Jo(ws) sin £ (14)
where
Bo = Uyfily, pr = Upfile, § = mRIL } )
8 =(d7)/T, = (xRLJ)/(wR%ioAp)

u,, u, are the axial and radial components of the
velocity vector, #, being the mean velocity at
entry. 6 is the ratio of the mixed mean tempera-
ture rise (4T) to the absolute temperature* T,
of the gas at entry.

Now define
T = U/Uo

(16)

* This is correct only for polytropic gas. For poly-
tropic vapour, the modification is obvious.
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where v, is the specific volume at entry. Since the
pressure has been assumed constant, = is also the
ratio of absolute temperatures. Substitution of
(10) into equation (8) gives

glog = ol
‘[‘#z-“—g‘g—'*'l‘r-_%‘z:
=yf. 4‘,() Josw)sin ¢ (17)

Finally, writing

B = m(po — P)/(AP)e, (4p)e = Flpotig)itoL (18)
S = F(plul|)/F(pqflo)

equation (4) can be separated into its com-
ponents:

% =1(%)-n = v (&) 09

The normalization denominator (4p), is evidently
the pressure drop which would result if there
were no heat generation and the gas conditions
at entry could remain unchanged during the
through flow.

The four equations (14), (17), (19) now form a
simultaneous set for the four unknown quantities

s My, 7, B. The boundary conditions are
pe=0,=0 _
p,Ej'}Zp.,wdw=1}f°rE_o ]

eB (20)
y,=é;v=0for£=ﬂ,

orw=0andw=1

If equation (6) is used, the function f can be
written as
1+ «lul/r K=bPoﬂo
14+« >~ a
x is a measure of the degree of turbulence and
depends upon the Reynolds number at entry.

f=

2

LAMINAR FLOW

One exact solution is possible for a special
form of /, namely if in equation (5) F is constant
or in (21) f = 1, which is the case if the flow is
everywhere laminar and if the change of viscosity
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with temperature is negligible. Then equation
(3) applies and equations (19) become

8 a8

52 = Mg é; = '/’I“r (22)
Taking the divergence of equation (3) or of
equations (22) and substituting equation (9) or

equation (14), one obtains a Poisson’s equation:

V;V¢p+;~]3.Q=0 23y
for the general case and
#8 o ( o8
¥ o 4 W aw( 8w)
=6- 4f( 3 Jo(sw)sin ¢ (24)

for the special case of equation (10).

Equation (24) with the boundary conditions
(20) can be readily solved analytically by classical
means. The result is

B )= (14+3) €~ W
_9_ ) it [J(ws) T (dw)] .
“IPIS [ul(s) + wlw)] sin ¢

I"s(w f):: “?"l‘i"o
- L 25
6 s [J.,(ws) o]
4 2 + st sAi(s) ()]
o8
W, 8 =1 - 2 =
.p Bw
_f . '/’J" Jl(Ws)_ LH(w)] .
=3 ¢=+s*[11<s> 708 ekl

J and I are the two Bessel’s functions. The
correctness of (25) can be easily verified by
substituting into equations (20) and (24).

Fig. 2 shows the velocity components i, and
u,foro =0, (s = 2-405) and y = »/2(L = R2).
1t may be noted that the velocity field is practi-
cally axial if 6 is not very much greater than unity.

To determine the temperature field, it will be
necessary to solve equation (17) together with
(25). The boundary condition is

r=1foré=0 (26)
This is a differential equation of first order and
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can be solved numerically or graphically using
the well-known isocline method. Owing to the
complexity of equation (25) an analytical solution
is difficult.

If only the maximum temperature r,, = T,,,/T,
is needed, then this can be determined analyti-
cally. It can be seen that the maximum tempera-
ture must occur on the stream line through the
cylindrical axis. For this stream line, we have
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FiG. 2. Coolant velocity field within the reactor core.
The plotted values are the axial and radial compon-
ents of the additional velocity above the adiabatic
incompressible values. The additional velocity is
proportional to the average heat generation.

08 0

evidently x, = 0 always due to symmetry. Then
equation (17) becomes:

dlogr 6 s
F’z(oy f) df = Z . Jl(s) .

and substituting u. from (25):
(8/4) [s/Jy(s)] sin £ d

sin ¢

dlog v = (1 + 6/2) = (8/4) Z(%, sy cos £
st 1 1
26,9 = i3 5 [ + wnm) @

L. S. DZUNG

This is readily integrated. The maximum tem-
perature is at the exit point ¢ = = and its value
is
. = {(l + 0/2) + (8/4) Z(¢, 5)| "
" T\ AF D) = 674 26 9)]
L+ sty
1+ sTy()/1(¥)

For the data above (s = 2-405, ¢ = =/2), the
evaluation of (28) results in

Tm =515, for § = 1 }

n=

(28)

Tm = 14:7, for § = 2 29)

These values are very much higher than the
mixed mean temperature, which is, by definition,
given by

F=1+0 (30)
The maximum temperature rise can therefore be
many times the average temperature rise.

TURBULENT FLOW

The assumption of laminar flow is perhaps
non-realistic for the application to pebble-bed
reactors. If turbulence is assumed, then the
general expression (21) must be used in equation
(19), and only numerical solution using digital
computer would be feasible. However, some
qualitative effects of turbulence may be inferred
from the basic equations. Since according to
Fig. 2 the magnitude |u| of the velocity does not
vary very much at sections perpendicular to the
axis, the mass flux density in one section will be
principally determined by the temperature, i.e.
+ in equation (21). Near the axis the heat rate
and hence the temperature is high. The frictional
force f is smaller according to (21). Equations
(19) then show that the velocity there will be
higher than in the laminar case. This would
mean that the central part gets more cooling gas
and the temperature is therefore less acute than
in the laminar case. Hence turbulence favours the
temperature distribution.

CONCLUSION
It is seen from the calculation that although
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the velocity field depends mainly upon the
average heating rate of the cooling gas and is
rather uniform throughout a cross-section of the
flow, the temperature field may be quite non-
uniform for laminar flow. The maximum value
of the temperature rise may be many times the
average value. Turbulence in the flow may
flatten the temperature peak, but the exact value

cannot be determined without a more thorough
solution of the given equations.
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